From the solutions for short and long time, it may be apparent that the enhancement of evaporation is proportional to \sqrt{Pe} , which, in turn, is proportional to the electric field strength. Although the results are encouraging, the current treatment is only applicable to the situations where the electric field generates a Taylor type of motion. At high field strength the strong current would create a magnetic field and a nonvanishing body force in the momentum equation. Such couplings and interactions must be accounted for in the analysis.

References

¹Taylor, G. I., "Studies in Electrohydrodynamics I. The Circulation Produced in a Drop by an Electric Field," *Proceedings of the Royal Society*, Royal Society of London, Vol. 291A, April 1966, pp. 159–166.

²Morrison, F. A., Jr., "Transient Heat and Mass Transfer to a Drop in an Electric Field," *Journal of Heat Transfer*, The American Society of Mechanical Engineers, Vol. 99, May 1977, pp. 269-273.

³Griffith, S. K. and Morrison, F. A., Jr., "Low Peclet Numbers Heat and Mass Transfer From a Drop in an Electric Field," *Journal of Heat Transfer*, The American Society of Mechanical Engineers, Vol. 101, Aug. 1979, pp. 484-488.

⁴Sharper, L., Jr. and Morrison, F. A., Jr., "Numerical Analysis of Heat and Mass Transfer From Fluid Spheres in an Electric Field," *Journal of Heat Transfer*, The American Society of Mechanical Engineers, Vol. 108, May 1986, pp. 337-342.

⁵Chang, L. S., Carleson, T. E., and Berg, J. C., "Heat and Mass Transfer to a Translating Drop in an Electric Field," *International Journal of Heat and Mass Transfer*, Pergamon, New York, Vol. 25, July 1982, pp. 1023–1030.

⁶Chang, L. S. and Berg, J. C., "Fluid Flow and Transfer Behavior of a Drop Translating in an Electric Field at Intermediate Reynolds Numbers," *International Journal of Heat and Mass Transfer*, Pergamon, New York, Vol. 26, June 1983, pp. 823-831.

⁷Chung, J. N., Oliver, D. L. R., and Carleson, T. E., "Transient Heat Transfer in a Fluid Sphere Translating in an Electric Field," American Society of Mechanical Engineers Paper 85-HT-75, 1985.

⁸Hallett, W. L. H., "Vapor Pressure Relations for Droplet Combustion Models," *Combusion and Flame*, El Sevier, New York, Vol. 65, July 1986, pp. 117-119.

Radiation View Factors from a Sphere to Nonintersecting Planar Surfaces

M. Sabet* and B. T. F. Chung† University of Akron, Akron, Ohio

Introduction

In the calculation of radiative heat exchange between two bodies, the determination of a radiation view factor becomes essential. Although a large number of radiation shape factors for different configurations have been made available, due to the tedious task of quadruple integral, there still exist many important geometric configurations involving a sphere and a finite surface for which the associated view factors are not known.

The purpose of this study is to develop the radiation shape factors systematically from a sphere to a class of nonintersecting planes. Radiation between a sphere and a planar element was evaluated analytically by Chung and Sumitra¹ and Juul.² Feingold and Gupta³ developed an analytical approach for the radiation view factors from spheres to various nonintersecting coaxial planes. Complementary to their work, Chung and Naraghi⁴ developed closed-form solutions for the view factors from spheres to intersecting disks and to the external surface of a coaxial cylinder. They further developed a general formulation for the view factors between a sphere and a class of axisymmetrical bodies.⁵ Balance and Donovan⁶ studied the view factor between spheres and intersecting disks using a Monte Carlo method.

A logical continuation of the previous efforts would be the evaluation of the view factors from a sphere to any noncoaxial surfaces. To the best knowledge of these authors, the aforementioned case has not been solved.

Mathematical Formulation

Consideration is given to Fig. 1, which depicts the radiation from a sphere to a noncoaxial differential planar area; its plane does not intersect the sphere. The view factor from dA_1 to A_2 has been found⁴ as

$$F_{dA_1 - A_2} = \frac{\cos\theta}{(1 + S)^2}, \ \theta \le \cot^{-1}\left(\frac{r_s}{\sqrt{(s + r_s)^2 - r_s^2}}\right)$$
 (1)

where

$$S=\frac{s}{r_c}$$

Referring to Fig. 1, we have $\cos\theta = d/\sqrt{x^2 + y^2 + d^2}$ and $(1+S)^2 = (x^2 + y^2 + d^2)/r_s^2$. Substituting the expressions into Eq. (1), making use of the reciprocity rule, and carrying out the integration gives

$$F_{2-1} = \iint_{A_1} dF_{A_2-dA_1} = \frac{d}{4\pi} \iint_{A_1} \frac{dA_1}{(x^2 + y^2 + d^2)^{3/2}}$$
 (2)

If A_1 is symmetrical with respect to the x or y axis, Eq. (2) can be reduced to a single integration form. Suppose that A_1 is

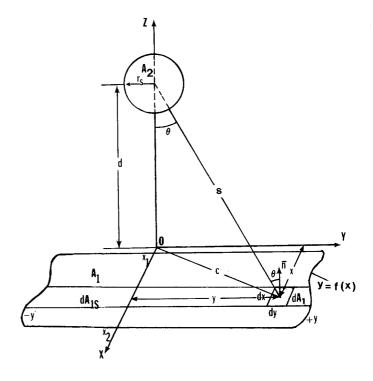


Fig. 1 Radiation between a sphere and a planar surface.

Received Aug. 6, 1987; revision received Oct. 28, 1987. Copyright © 1987 by B.T.F. Chung. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

^{*}Graduate Assistant, Department of Mechanical Engineering.

[†]Professor, Department of Mechanical Engineering.

symmetrical with respect to the x axis. Integrating Eq. (2) with respect to y, we obtain the view factor from a sphere to an infinite strip, with a width equal to dx. Knowing that y = f(x) and integrating the resulting expression from x_1 to x_2 , we obtain the view factor from a sphere to any nonintersecting planar surfaces:

$$F_{2-1} = \frac{d}{2\pi} \int_{x_1}^{x_2} \frac{f(x)}{(x^2 + d^2)\sqrt{x^2 + [f(x)]^2 + d^2}} dx$$
 (3)

Specific cases in light of the general expression presented are compiled in Table 1 for different f(x).

Results and Discussion

It can be seen that the expressions represented in Table 1 require only a single integration, which can be performed easily using the standard numerical techniques. The results for all of the limiting cases such as the view factors from a sphere to a coaxial disk, sector, segment, rectangle, and a noncoaxial disk, can be obtained directly from Table 1. As an example, if we let $\alpha = 2\pi$ in case 1, we obtain the view factor from a sphere

to a noncoaxial disk in the form of

$$F_{2-1} = \frac{R^2}{2\pi} \int_{Z-1}^{Z+1} \frac{\sqrt{1 - (X-Z)^2}}{(1 + R^2 X^2)\sqrt{1 + R^2 X^2 + R^2 - R^2 (X-Z)^2}} dX$$
 (4)

The numerical results of this expression for various values of Z agree excellently with those of Ref. 3. If we set Z = c/r = 0 in the preceding equation, it yields the view factor from sphere to a coaxial disk in the form of⁵

$$F_{2-1} = \frac{1}{2} \left[1 - \frac{1}{(1+R^2)^{1/2}} \right]$$
 (5)

which is identical to the expression derived by Feingold and Gupta.³ Expressions listed in Table 1 have been solved numerically using Gaussian quadrature method for some arbitrarily chosen parameters. Typical results are illustrated in Figs. 2-5.

Table 1 View factors from sphere to some nonintersecting planes

Configuration ID	View factor from the sphere, F_{2-1}	Parameters
1) Sphere to noncoaxial sector	$m\left[\int_{X_2}^{X_1} K_1 dX + \int_{X_1}^{X_3} K_2 dX\right]$	$K_{i} = \frac{f_{i}}{h\sqrt{h+R^{2}f_{i}^{2}}} \qquad i = 1,2,3,4$ $h = 1 + R^{2}X^{2}$ $f_{1} = (X-Z)\tan\frac{\alpha}{2}$ $f_{2} = \sqrt{1 - (X-Z)^{2}}$ $f_{3} = \frac{\cos(\frac{\alpha}{2} - \beta) + Z - X}{\tan\beta} - \sin(\frac{\alpha}{2} - \beta)$
2) Sphere to noncoaxial segment	$\frac{m}{2} \left[\int_{X_5}^{X_3} K_2 dX - \int_{X_5}^{X_4} K_3 dX + \int_{X_4}^{X_3} K_2 dX \right]$ for $\beta \le \frac{\alpha}{2} \le \frac{\pi}{2}$	$f_4 = \frac{\cos\left(\frac{\alpha}{2} + \beta\right) + Z - X}{\tan\beta} + \sin\left(\frac{\alpha}{2} + \beta\right)$ $X_1 = Z + \cos\frac{\alpha}{2}, X_2 = Z$
	for $\beta \le \frac{\alpha}{2} \le \frac{\alpha}{2}$ $\frac{m}{2} \left[\int_{X_5}^{X_4} (K_2 - K_3) dX \right]$ for $\alpha \le \pi$ and $\beta \ge \frac{\alpha}{2}$ or $(\pi - \beta) \ge \frac{\alpha}{2}$ $\frac{m}{2} \left[\int_{X_6}^{X_4} K_2 dX - \int_{X_5}^{X_4} K_4 dX + \int_{X_6}^{X_5} K_2 dX \right]$ for $(\pi - \beta) \le \frac{\alpha}{2} \le \frac{\pi}{2}$	$X_1 = Z + \cos\frac{1}{2}, X_2 = Z$ $X_3 = Z + 1, X_4 = Z + \cos\left(\frac{\alpha}{2} - \beta\right)$ $X_5 = Z + \cos\left(\frac{\alpha}{2} + \beta\right), X_6 = Z - 1$ $Z = \frac{c}{r}, R = \frac{r}{d}$ $m = \frac{R^2}{2\pi}$
3) Sphere to noncoaxial rectangle	$\frac{B_1}{2\pi} \int_{Z-B_2}^{Z+B_2} \frac{\mathrm{d}X}{(1+X^2)\sqrt{1+X^2+B_1^2}}$	$B_1 = \frac{b'}{\mathrm{d}}$, $B_2 = \frac{a'}{d}$, $Z = \frac{c}{\mathrm{d}}$
4) Sphere to noncoaxial ellipse	$rac{E^2}{4\pi} \int_{X_o-1}^{X_o+1} rac{1}{p} (q_1-q_2) \mathrm{d}X$	$q_{i} = u_{i} / \sqrt{p + E^{2}u_{i}^{2}}, i = 1,2$ $p = 1 + E^{2}X^{2}$ $u_{1} = y_{o} + \sqrt{(1 - \epsilon^{2})[1 - (X - X_{o})^{2}]}$ $u_{2} = y_{o} - \sqrt{(1 - \epsilon^{2})[1 - (X - X_{o})^{2}]}$ $E = a/d, \epsilon = \sqrt{1 - b^{2}/a^{2}}$ $X_{o} = x_{o}/a, Y_{o} = y_{o}/a$

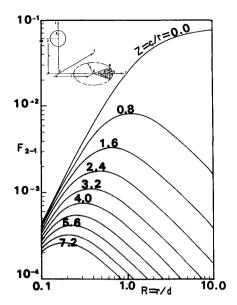


Fig. 2 View factor from a sphere to a sector, $\alpha = 60$ deg.

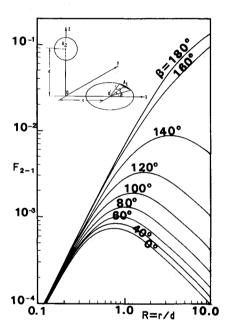


Fig. 3 View factor from a sphere to a segment, $\alpha = 60 \deg Z = 1$.

Figure 2 plots the view factor from a sphere to a sector against R(R = r/d) with Z(Z = c/r) as a parameter and the sector angle α fixed at 60 deg. As can be seen, for Z=0(coaxial sector) and at a very large value of R, the curve becomes asymptote to $F_{2-1}=0.5\times60/360=0.083$. Figure 3 shows the view factor from a sphere to a nonsymmetric segment as a function of R with $\alpha = 60$ deg. For a constant Z, as β increases, i.e., the segment moves closer to the sphere, the view factor increases. Figure 4 illustrates the view factor from a sphere to a rectangle in terms of $B_2(B_2 = a'/d)$ and $B_1(B_1 = b'/d)$ for Z = 2. The curves in this situation eventually become asymptote to some constant values. Figure 5 gives the view factor from a sphere to an ellipse. For a coaxial ellipse, i.e., $x_o = y_o = 0$, as E becomes very large, all curves approach a constant value of 0.5. This is in agreement with our intuition. Additional numerical results may be found in Ref. 7 (through interlibrary loan).

The application of the present general formula is not restricted to the geometries mentioned. It can also be applied to generate the radiation view factors from a sphere to any other nonintersecting planar surfaces, such as a triangle,

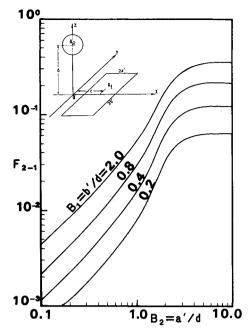


Fig. 4 View factor from a sphere to a rectangle with Z = 2.

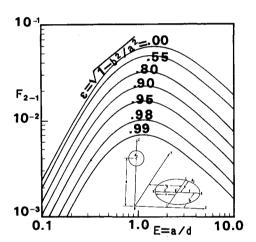


Fig. 5 View factor from a sphere to a noncoaxial ellipse, $x_o = y_o = 1$.

parallelogram, and trapezoid, either in a coaxial or noncoaxial situation.

References

¹Chung, B.T.F. and Sumitra, P.S., "Radiation Shape Factors from Plane Point sources," *Journal of Heat Transfer*, *Transactions of the ASME*, Vol. 94, No. 3, 1972, pp. 328-330.

²Juul, N.H., "Diffuse Radiation View Factor from Differential

²Juul, N.H., "Diffuse Radiation View Factor from Differential Plane Source to Sphere," *Journal of Heat Transfer*, *Transactions of the ASME*, Vol. 101, No. 3, 1979, pp. 558–560.

³Feingold, A. and Gupta, K.G., "New Analytical Approach to the

³Feingold, A. and Gupta, K.G., "New Analytical Approach to the Evaluation of Configuration Factors in Radiation from Spheres and Infinitely Long Cylinders," *Journal of Heat Transfer*, *Transactions of the ASME*, Vol. 9, No. 92, 1970, pp. 69-76.

⁴Chung, B.T.F. and Naraghi, M.H.N., "Some Exact Solutions for Radiation View Factors from Spheres," *AIAA Journal*, Vol. 19, Aug. 1981, pp. 1077-1081.

⁵Chung, B.T.F. and Naraghi, M.H.M., "A Simpler Formulation for Radiative View Factors from Spheres to a Class of Axisymmetric Bodies," *Journal of Heat Transfer*, *Transactions of the ASME*, Vol. 104, 1982, pp. 201–204.

⁶Ballance, J.O. and Donovan, J., "Radiation Configuration Factors for Annular Rings and Hemispherical Sectors," *Journal of Heat Transfer*, *Transactions of the ASME*, Vol. 95, No. 2, 1973, pp. 275-276.

'Sabet, M., "Radiation View Factors from a Sphere to Any Nonintersecting Planar Surfaces," M.S. Thesis, Dept. of Mechanical Engineering, University of Akron, OH, 1987.